Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 11(2): nwad305, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213530

RESUMO

The interaction between sites A, B and X with passivation molecules is restricted when the conventional passivation strategy is applied in perovskite (ABX3) photovoltaics. Fortunately, the revolving A-site presents an opportunity to strengthen this interaction by utilizing an external field. Herein, we propose a novel approach to achieving an ordered magnetic dipole moment, which is regulated by a magnetic field via the coupling effect between the chiral passivation molecule and the A-site (formamidine ion) in perovskites. This strategy can increase the molecular interaction energy by approximately four times and ensure a well-ordered molecular arrangement. The quality of the deposited perovskite film is significantly optimized with inhibited nonradiative recombination. It manages to reduce the open-circuit voltage loss of photovoltaic devices to 360 mV and increase the power conversion efficiency to 25.22%. This finding provides a new insight into the exploration of A-sites in perovskites and offers a novel route to improving the device performance of perovskite photovoltaics.

2.
Small ; 18(28): e2201930, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35723194

RESUMO

Defect states play an important role in the photovoltaic performance of metal halide perovskites. Particularly, the passivation of surface defects has made great contributions to high-performance perovskite photovoltaics. This highlights the importance of understanding the surface defects from a fundamental level by developing more accurate and operando characterization techniques. Herein, a strategy to enable the surface carriers and photocurrent distributions on perovskite films to be visualized in the horizontal direction is put forward. The visual image of photocurrent distribution is realized by combining the static local distribution of carriers provided by scanning near-field optical microscopy with the dynamic transporting of carriers achieved via a scanning photocurrent measurement system. Taking a surface passivated molecule as an example, a comprehensive defect scene including static and dynamic as well as local and entire conditions is obtained using this strategy. The comprehensive analysis of the trap states in perovskite films is pioneered vertically and horizontally, which will powerfully promote the deep understanding of defect mechanisms and carrier behavior for the goal of fabricating high-performance perovskite optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...